Examine Some Estimates Simulated of Linear Regression model based on Confidence Intervals Simulated

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Post-selection Confidence Intervals in Linear Regression

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

متن کامل

Point Estimates and Confidence Intervals Forvariable Importance in Multiple Linear Regression

by Darlington (1968), and has been discussed more recently by Bring (1996) who called it the "product measure", and by Thomas, Hughes and Zumbo (1998) who responded to some of Bring’s criticisms of it. The justification for this measure had always been heuristic, at best, until Pratt (1987) provided a theoretical derivation based on a set of natural axioms that should be satisfied by a measure ...

متن کامل

On confidence intervals for GAMs based on penalized regression splines

Generalized additive models represented using penalized regression splines, estimated by penalized likelihood maximisation and with smoothness selected by generalized cross validation or similar criteria, provide a computationally efficient general framework for practical smooth modelling. Various authors have proposed approximate Bayesian interval estimates for such models, based on extensions...

متن کامل

On confidence intervals for semiparametric expectile regression

In regression scenarios there is a growing demand for information on the conditional distribution of the response beyond the mean. In this scenario quantile regression is an established method of tail analysis. It is well understood in terms of asymptotic properties and estimation quality. Another way to look at the tail of a distribution is via expectiles. They provide a valuable alternative s...

متن کامل

Confidence Intervals for Nonparametric Regression

In non-parametric function estimation, providing a confidence interval with the right coverage is a challenging problem. This is especially the case when the underlying function has a wide range of unknown degrees of smoothness. Here we propose two methods of constructing an average coverage confidence interval built from block shrinkage estimation methods. One is based on the James-Stein shrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1804/1/012072